
Advanced Computer Programming
[Lecture 07]

Saeed Reza Kheradpisheh

kheradpisheh@ut.ac.ir

Department of Computer Science
Shahid Beheshti University

Spring 1397-98

1



INHERITANCE

Objects from related classes usually share common behavior. For
example, shovels, rakes, and clippers all perform gardening tasks.
By using inheritance, you will be able to share code between classes
and provide services that can be used by multiple classes.

2



Inheritance Hierarchies

Definition
In object-oriented design, inheritance is a relationship between a
more general class (called the superclass) and a more specialized
class (called the subclass).

A subclass inherits data and behavior from a superclass.

You can always use a subclass object in place of a superclass
object (substitution principle).

3



An Inheritance Hierarchy of Vehicle Classes

4



Taking a Quizz!
A quiz consists of questions, and there are different kinds of questions:

Fill-in-the-blank
Choice (single or multiple)
Numeric (where an approximate answer is ok)
Free response

5



Taking a Quizz!
A quiz consists of questions, and there are different kinds of questions:

Fill-in-the-blank
Choice (single or multiple)
Numeric (where an approximate answer is ok)
Free response

5



Taking a Quizz!
A quiz consists of questions, and there are different kinds of questions:

Fill-in-the-blank
Choice (single or multiple)
Numeric (where an approximate answer is ok)
Free response

6



Taking a Quizz!
A quiz consists of questions, and there are different kinds of questions:

Fill-in-the-blank
Choice (single or multiple)
Numeric (where an approximate answer is ok)
Free response

7



The Question Type

At the root of this hierarchy is the Question type. What is it supposed
to do?

Display its text.

Check whether a given response is a correct answer.

Data members:

String text

String answer

Public methods:

void setText(String questionText)

void setAnswer(String correctResponse)

boolean checkAnswer(String response)

void display()

8



Exercise (Question.java)
Implement the class Question.

9



Self Check

Consider classes Manager and Employee. Which should be the
superclass and which should be the subclass?

Consider the method doSomething(Car c). List all vehicle
classes from Figure 1 whose objects cannot be passed to this
method.

Should a class Quiz inherit from the class Question? Why or why
not?

10



Do not overuse Inheritance!

Programming Tip
Use a single class for variation in values, Inheritance for variation in
behavior.

Consider two different applications that work with regular cars and
hybrid cars:

Tracking the fuel efficiency of cars by logging the distance
traveled and the refueling amounts.

No differences in behavior, no need for inheritance.

Showing how to repair different kinds of vehicles.
Different behaviors, need for different classes and inheritance.

11



Do not overuse Inheritance!

Programming Tip
Use a single class for variation in values, Inheritance for variation in
behavior.

Consider two different applications that work with regular cars and
hybrid cars:

Tracking the fuel efficiency of cars by logging the distance
traveled and the refueling amounts.
No differences in behavior, no need for inheritance.

Showing how to repair different kinds of vehicles.

Different behaviors, need for different classes and inheritance.

11



Do not overuse Inheritance!

Programming Tip
Use a single class for variation in values, Inheritance for variation in
behavior.

Consider two different applications that work with regular cars and
hybrid cars:

Tracking the fuel efficiency of cars by logging the distance
traveled and the refueling amounts.
No differences in behavior, no need for inheritance.

Showing how to repair different kinds of vehicles.
Different behaviors, need for different classes and inheritance.

11



Implementing Subclasses

In Java, you form a subclass by specifying what makes the
subclass different from its superclass.
Subclass objects automatically have the instance variables that
are declared in the superclass. You only declare instance
variables that are not part of the superclass objects.

However, the private instance variables of the superclass are
inaccessible.

The subclass inherits all public methods from the superclass. You
declare any methods that are new to the subclass, and change
the implementation of inherited methods if the inherited behavior
is not appropriate.

12



Implementing the Subclass ChoiceQuestion

A ChoiceQuestion object differs from a Question object in three
ways:

Its objects store the various choices for the answer.

There is a method for adding answer choices.

The display method of the ChoiceQuestion class shows these
choices so that the respondent can choose one of them.

13



extends

The extends reserved word indicates that a class inherits from a
superclass.

14



Back to ChoiceQuestion

It adds an additional instance variable, choices.

The addChoice method is specific to the ChoiceQuestion
class. You can only apply it to ChoiceQuestion objects, not
general Question objects.

The display method is a method that already exists in the
superclass. The subclass overrides this method, so that the
choices can be properly displayed.

15



Overriding Methods

Usage
An overriding method can extend or replace the functionality of the
superclass method.

Consider the display method of the ChoiceQuestion class:

Display the question text (superclass can do it).

Display the answer choices (the extension).

Usage
Use the reserved word super to call a superclass method.

16



Exercise (ChoiceQuestion.java)
Implement the class ChoiceQuestion.

17



Self Check
Suppose q is an object of the class Question and cq an object of
the class ChoiceQuestion. Which of the following calls are
legal?

1 q.setAnswer(response)
2 cq.setAnswer(response)
3 q.addChoice(choice, true)
4 cq.addChoice(choice, true)

What is wrong with the following implementation of the display
method?

18



Self Check
Suppose q is an object of the class Question and cq an object of
the class ChoiceQuestion. Which of the following calls are
legal?

1 q.setAnswer(response)
2 cq.setAnswer(response)
3 q.addChoice(choice, true)
4 cq.addChoice(choice, true)

What is wrong with the following implementation of the display
method?

18



Self Check

Look again at the implementation of the addChoice method that
calls the setAnswer method of the superclass. Why don’t you
need to call super.setAnswer?

19



Overriding or Overloading?

In Java, two methods can have the same name, provided they
differ in their parameter types (overloaded methods).

Overloading is different from overriding, where a subclass
method provides an implementation of a method whose
parameter variables have the same types.

If you mean to override a method but use a parameter variable
with a different type, then you accidentally introduce an
overloaded method.

When overriding a method, be sure to check that the types of the
parameter variables match exactly.

20



Overriding or Overloading?

In Java, two methods can have the same name, provided they
differ in their parameter types (overloaded methods).

Overloading is different from overriding, where a subclass
method provides an implementation of a method whose
parameter variables have the same types.

If you mean to override a method but use a parameter variable
with a different type, then you accidentally introduce an
overloaded method.

When overriding a method, be sure to check that the types of the
parameter variables match exactly.

20



Calling the Superclass Constructor

A subclass constructor can only initialize the instance variables of
the subclass.

The superclass instance variables also need to be initialized.

Mostly constructors are in charge of initializing instance variables.

In order to specify another constructor, you use the super
reserved word, together with the arguments of the superclass
constructor, as the first statement of the subclass constructor.

21



Polymorphism

Definition
Polymorphism (“having multiple shapes”) allows us to manipulate
objects that share a set of tasks, even though the tasks are executed
in different ways.

Can we write a program that shows a mixture of both question types?

22



Polymorphism

Definition
In Java, method calls are always determined by the type of the actual
object, not the type of the variable containing the object reference.
This is called dynamic method lookup.

23



Self Check

Assuming SavingsAccount is a subclass of BankAccount, which of
the following code fragments are valid in Java?

1 BankAccount account = new SavingsAccount();

2 SavingsAccount account2 = new BankAccount();

3 BankAccount account = null;

4 SavingsAccount account2 = account;

24



Example of Inheritance:
The Circle and Cylinder Classes

25



Abstract Classes
Definition

An abstract method is a method whose implementation is not
specified.

An abstract class is a class that cannot be instantiated.

Sometimes, it is desirable to force programmers to override a
method.
An abstract method has no implementation. This forces the
implementors of subclasses to specify concrete implementations
of this method. e.g.
public abstract void deductFees();
You cannot construct objects of classes with abstract methods.
These classes are called abstract classes.
In Java, you must declare all abstract classes with the reserved
word abstract. e.g.
public abstract class Account

26



Abstract Classes
Definition

An abstract method is a method whose implementation is not
specified.

An abstract class is a class that cannot be instantiated.

Sometimes, it is desirable to force programmers to override a
method.
An abstract method has no implementation. This forces the
implementors of subclasses to specify concrete implementations
of this method. e.g.
public abstract void deductFees();
You cannot construct objects of classes with abstract methods.
These classes are called abstract classes.
In Java, you must declare all abstract classes with the reserved
word abstract. e.g.
public abstract class Account

26



Abstract Classes

Note that you cannot construct an object of an abstract class, but
you can still have an object reference whose type is an abstract
class. Why?

Dynamic lookup.

27



Abstract Classes

Note that you cannot construct an object of an abstract class, but
you can still have an object reference whose type is an abstract
class. Why?
Dynamic lookup.

27



Example of Abstract Class:
Shapes

Suppose that our program uses many kinds of shapes, such as
triangle, rectangle and so on.

We should design a superclass called Shape, which defines the
public interfaces (or behaviors) of all the shapes.

28



Final Methods and Classes

Usage
If you want to prevent other programmers from creating subclasses or
from overriding certain methods, use the final reserved word.

Finalizing a class:
public final class String { . . . }
Finalizing a method:

29



Protected Access

Definition
Protected data or method in an object can be accessed by the
methods of the object’s class and all its subclasses.

30



The Object Class

In Java, every class that is declared without an explicit extends
clause automatically extends the class Object.
The Object class defines several very general methods,
including:

toString, which yields a string describing the object.
equals, which compares objects with each other.
hashCode, which yields a numerical code for storing the object in
a set.

31



Overriding the toString Method

Returns a string representation for each object.

It is called automatically whenever you concatenate a string with
an object.

Without overriding the toString method, it returns the hash
code of the object.

32



The equals Method

Usage
The equals method checks whether two objects have the same
contents.
This is different from the test with the == operator, which tests whether
two references are identical.
The equals method acts the same as == if it is not overridden.

33



The instanceof Operator
Usage
The instanceof operator tests whether an object belongs to a
particular type.

34



INTERFACE

It is often possible to design a general and reusable mechanism for
processing objects by focusing on the essential operations that an
algorithm needs. You use interface types to express these
operations.

35



Interface Type

36



Interface Type V.S. Class

An interface type is similar to a class, but there are several important
differences:

All methods in an interface type are abstract; that is, they have a
name, parameter variables, and a return type, but they dont have
an implementation.

All methods in an interface type are automatically public.

An interface type cannot have instance variables.

An interface type cannot have static methods.

37



Example of Interfaces:
Shapes

Suppose that our program uses many kinds of shapes, such as
triangle, rectangle and so on.

We should design an Interface called Shape, which defines the
public interfaces (or behaviors) of all the shapes.

38


